Clever thinking creates cleaner water
25 October, 2012
Clever thinking creates cleaner water
Two chemists from the University of Waikato have
come up with an innovative method for treating bore water on
Waikato farms.
They’re currently trialling the
system on a Waikato farm and may have hit upon a low-cost
solution for developing countries, where many people have
limited access to clean and affordable
water.
Associate Professor Alan Langdon and
post-doctoral researcher Dr Hilary Nath decided to try using
electrochemistry to remove the iron and manganese prevalent
in bore water from Waikato’s peaty soils.
The
residues give the water its typical browny-orange colour,
and generally make it undrinkable without expensive
treatment using aerators, filters, ion exchangers and tanks.
The researchers came up with a simple system that
uses electric current passing between two perforated
titanium electrodes to turn naturally occurring chloride
ions in the water into chlorine.
The chlorine then
oxidises and precipitates out the metal contaminants, and
also disinfects the water passing through the system, making
it safe to drink.
Best of all, the whole system can be
powered by a car battery.
“By bringing the
electrodes closer together than anyone else has been able to
we can reduce electrical resistance and consume less
power,” says Dr Nath. “And because the flow path through
the cell is very short, we can achieve good water flow at
modest pressure.”
The system is known as PEFT –
perforated electric flow through – and is patented in New
Zealand with international patents filed. A prototype will
be on show at the University of Waikato stand at Equidays
next month; the university is a strategic partner of
Equidays which runs from 2-4 November.
Drs Langdon and
Nath are now testing the prototype, and getting good results
– they’ve seen total oxidation of iron during their
trial.
“The initial focus will be disinfection of
harvested rain water, disinfection of water supplies derived
from surface water and bore water contaminated with iron –
we need to be very sure our technology is robust before
contemplating overseas markets, particularly in developing
nations.”
The researchers noticed that the closer together the two electrodes were positioned, the higher the electric field generated between them. And the higher the electric field, the more potent the chlorine being produced.
The two together were so powerful they could kill bugs in the water at much lower chlorine levels than normally required – the electric field was able to puncture the membrane of a bug making it 100 times more susceptible to the disinfecting effect of the chlorine.
At slightly higher applied voltages the PEFT cell can also disinfect water by the electric field alone, with no need to produce any chlorine.
“It’s low technology, but it’s
very clever nevertheless,” says Dr Langdon.
WaikatoLink, the University of Waikato’s commercialisation arm, is helping with the commercialisation of the technology. The Kiwi Innovation Network (KiwiNet) – a collaboration focused on research commercialisation – is also providing support as well as investment from the Ministry of Science and Innovation’s PreSeed Accelerator Fund (PSAF).