Million-dollar funding to fight antibiotic resistant bugs
Million-dollar funding to fight antibiotic resistant superbugs
Victoria University of Wellington researchers have been awarded nearly $1.2 million in funding to find new and improved antibiotics from previously untapped sources.
The Health Research Council of New Zealand has granted $1,195,267 to Dr Jeremy Owen and Associate Professor David Ackerley from Victoria’s School of Biological Sciences for their three-year project.
“The project will use DNA sequencing and synthetic biology to discover new drugs. These techniques allow us to extract new molecules from bacteria that can’t be grown in the laboratory,” says Dr Owen.
“Just because we can’t grow a bacterial species in the lab doesn’t mean we can’t access an antibiotic it makes. The instructions for how to build that antibiotic will be somewhere in its DNA—if we can find these instructions, we can make the antibiotic.
“Currently, scientists can culture less than one percent of bacteria that exist on Earth and this one percent has provided most of the antibiotics we currently use in medicine. But resistance to these antibiotics is spreading, so we need to turn to the unculturable bacteria to find new drug candidates.”
Associate Professor Ackerley says antibiotic resistance is a significant threat, with the World Health Organization recently describing humanity as being in a race against time to develop antibiotics against multi-drug resistant superbugs.
“We’re in danger of going back to the time when people would routinely die of the most mundane things, like infected scratches from rose thorns while gardening.
“Our work aims to discover new molecules that have antibiotic activity and it is our hope that these will be developed into new medicines. We desperately need new antibiotics to fight drug resistant bacteria but we also need to use these antibiotics more responsibly to prevent the development of resistance.”
Once the new molecules are tested for antibacterial, anti-fungal or anti-cancer properties, the team plans to take promising molecules forward as new drug candidates.
“So many promising drug candidates never make it to the clinic because there is not enough supply,” says Associate Professor Ackerley.
“Our synthetic biology approach ensures we will be able to make lots of whatever we find. Plus, the classes of molecule we are looking for do generally have strong antibiotic potential, so we think we have a good chance of finding something useful.”
Dr Owen and Associate Professor Ackerley will work with Dr Rob Keyzers and Associate Professor Peter Northcote in Victoria’s School of Chemical and Physical Sciences.
ENDS